设矩阵有一个正特征值和两个负特征值,则【 】
A、a>4,b>0
B、a<4,b>0
C、a>4,b<0
D、a<4,b<0
设单位质点P,Q分别位于点(0,0)和(0,1)处,P从(0,0)处出发沿x轴正向移动,记G为引力常量,则当质点P移动到点(l,0)时,克服质点Q的引力所做的功为【 】
设函数f(x,y)连续,则∫-2²dx ∫4-x²4f(x,y)dy=【 】
设函数f(x),g(x)在x=0的某去心领域内有定义且恒不为零.若x→0时,f(x)是g(x)的高阶无穷小,则当x→0时【 】
如果对微分方程y''-2ay'+(a+2)y=0的任一解y(x),反常积分∫0+∞y(x)dx均收敛,则a的取值范围是【 】
已知函数f(x)=∫0xet² sintdt,g(x)=∫0xet²dt∙sin²x,则【 】
设函数z=z(x,y)由z+lnz-∫yxe-t² dt=0确定,则∂z/∂x+∂z/∂y=【 】
设矩阵A=,已知1是A的特征多项式的重根.(1)求a的值;(2)求所有满足Aα=α+β,A²α=α+2β的非零列向量α,β.
设Σ是由直线 绕直线 (t为参数)旋转一周得到的曲面,Σ1是Σ介于平面x+y+z=0与x+y+z=1之间部分的外侧,计算曲面积分∬Σ1xdydz+(y+1)dzdx+(z+2)dxdy.
设A,B为2阶矩阵,且AB = BA,则“A有两个不相等的特征值”是“B可对角化”的【 】
设A,B都为4阶复方阵,则A与B相似当仅当A与B有同的特征多项式,且每个特征值的几何重数(即对应特征子空间的维数)也相同.
设n阶矩阵A的元素全为1,则A的n个特征值是__________.
设A为3阶矩阵,A=,则A的特征值为1,-1,0的充分必要条件是【 】
设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。
设A为n×n复矩阵,证明:存在一个n维向量α,使α,Aα,…,An-1α线性无关的充要条件是A的每个特征向量值恰有一个线性无关的特征向量。
设σ为n维线性空间V的一个线性变换,σ2=σ,证明:(1)σ特征值为0,1;(2)设V0,V1分别为0,1对应的特征子空间,则V=V0⊕V1;(3)若σ只有0特征值,则σ为零变换.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2=,ξ3=,又向量β=.(1)将β用ξ1,ξ2,ξ3线性表出;(2)求An β(n为自然数).