4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现:抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现:抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
解答过程见word版
已知A=(x²+2x+1)/(x²-1)-x/(x-1).(1)化简A;(2)当A满足不等式组,且x为整数时,求A的值.
如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF.求证:BE=AF.
如图,四边形ABCD中,∠A=90°,AB=3√3,点M,N分别线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点 ,则EF长度的最大值为______.
如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cosC=______.
某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时0≤x≤5的函数关系式为__________.
根据环保局公布的广州市2013年到2014年PM2.5的主要来源的数据,制成扇形统计图(如图4).其中所占百分比最大的主要来源是________(填主要来源的名称).
某学校开设了劳动教育课程.小明从感兴趣的“种植”、“烹饪”、“陶艺”、“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为【 】
书架上有2本数学书、1本物理书,从中任取1本书是物理书的概率为【 】
小明从《红星照耀中国》、《红岩》、《长征》、《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为________.
一个口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是________.
一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是【 】
在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是______.
长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化,若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是【 】
为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是【 】
甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是【 】
一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:______.
如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是【】
下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是【 】
在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.